

Phison Electronics Corporation PS3111-S11 micro SSD TM (μ SSD) 3D NAND Specification

Version 1.1

Phison Electronics Corporation

No.1, Qun-Yi Road, Jhunan, Miaoli County, Taiwan 350, R.O.C. Tel: +886-37-586-896 Fax: +886-37-587-868 E-mail: sales@phison.com / suppport@phison.com

Document Number: S-18163

ALL RIGHTS ARE STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSLATED TO ANY OTHER FORMS WITHOUT PERMISSION FROM PHISON ELECTRONICS CORPORATION.

Phison may make changes to specifications and product description at any time without notice. PHISON and the Phison logo are trademarks of Phison Electronics Corporation, registered in the United States and other countries. Products and specifications discussed herein are for reference purposes only. Copies of documents which include information of part number or ordering number, or other materials may be obtained by emailing us at sales@phison.com or support@phison.com.

©2016 Phison Electronics Corp. All Rights Reserved.

Revision History

Revision	Draft Date	History	Author
1.0	2017/08/10	First release	Alvin Chiu
1.1	2018/01/17	Update performance data	Alvin Chiu
1.1	2020,02,27	2. Add the crystal spec in chapter 5	7

Product Overview

Capacity

32GB up to 256GB

• SATA Interface

 SATA 1.5Gbps, 3Gbps, and 6Gbps interface

Flash Interface

Flash type: TSB BiCS 3

Performance

Read: up to 550 MB/s

Write: up to 480 MB/s

Power Consumption^{Note1}

Active mode: 1,495

Idle mode: 310

MTBF

More than 2,000,000 hours

Advanced Flash Management

Static and Dynamic Wear Leveling

Bad Block Management

■ TRIM

■ SMART

Over-Provision

Firmware Update

■ SmartZIPTM

Low Power Management

DEVSLP Mode (Optional)

DIPM/HIPM Mode

Temperature Range

■ Operation: 0°C ~ 70°C

■ Storage: -40°C ~ 85°C

RoHS compliant

Notes:

1. Please see "4.2 Power Consumption" for details.

Performance and Power Consumption

		Performance				Power Consumption		
Canacity	Elach Structura	CrystalD	iskMark	AT	то	Pond	Write	
Capacity	Flash Structure Read Write		Write	Read	Write	Read (mW)	(mW)	
		(MB/s)	(MB/s)	(MB/s)	(MB/s)	(IIIVV)	(IIIVV)	
32GB	32GB x1, TSB BiCS3	290	50	560	540	860	825	
64GB	32GB x2, TSB BiCS3	550	250	560	540	1,130	1,030	
128GB	32GB x4, TSB BiCS3	550	450	560	540	1,135	1,330	
256GB	32GB x8, TSB BiCS3	550	480	560	540	1,215	1,495	

NOTE: All of performance are estimated from 2.5" SSD

TABLE OF CONTENTS

1.	INTRO	DUCTION	1
	1.1. Ge	eneral Description	1
	1.2. Co	ontroller Block Diagram	1
	1.3. Fla	ash Management	1
	1.3.1		
	1.3.2	2. Wear Leveling	2
	1.3.3	3. Bad Block Management	2
	1.3.4	4. TRIM	2
	1.3.5	5. SMART	2
	1.3.6	5. Over-Provision	3
	1.3.7	1 3	
	1.4. Lo	ow Power Management	3
	1.4.1		
	1.4.2	2. DIPM/HIPM Mode	3
	1.5. Po	ower Loss Protection: Flushing Mechanism (Optional)	3
	1.6. Ac	dvanced Device Security Features	4
	1.6.1		
	1.6.2	2. Write Protect	4
	1.7. SS	SD Lifetime Management	4
	1.7.1		
	1.8. Ar	n Adaptive Approach to Performance Tuning	5
	1.8.1		
	1.8.2	2. Predict & Fetch	5
	1.8.3	3. SmartZIP [™]	5
2.	PRODU	JCT SPECIFICATIONS	6
3.	ENVIRO	ONMENTAL SPECIFICATIONS	8
	3.1. En	nvironmental Conditions	8
	3.1.1	V	
	3.1.2	2. Electrostatic Discharge (ESD)	9
	3.1.3		
	3.2. Pa	ackage Qualification	9
	3.2.1	-	
	3.2.2	2. Solderability Test	9

		3.2.3.	Pre-condition Test	10
		3.2.4.	High Acceleration Stress Test (HAST/unbias)	10
		3.2.5.	Temperature Cycling Test (TCT)	10
	3.3.	MTBF		10
	3.4.	Certifi	ication & Compliance	10
4.	El	LECTRICA	L SPECIFICATIONS	11
	4.1.	Supply	y Voltage	11
	4.2.	Power	r Consumption	11
5.	IN			
	5.1.	Pin As	ssignment and Descriptions	12
	5.2.	Crysta	al Spec	17
6.	SI	UPPORTE	D COMMANDS	18
	6.1.		Command List	
	6.2.		fy Device Data	
7.			DIMENSION	
8.	P	RODUCT \	WARRANTY POLICY	27
9.			ES	
10.	TI	ERMINOL	.OGY	29
11.			INFORMATION	

LIST OF FIGURES

Figure 1-1 PS3111 uSSD Controller Block Diagram	1
Figure 5-1 PS3111 uSSD Pin Assignment (Top View)	12
Figure 5-2 uSSD Pin Assignment	13
LIST OF TABLES	
Table 3-1 High Temperature Test Condition	8
Table 3-2 Low Temperature Test Condition	8
Table 3-3 High Humidity Test Condition	8
Table 3-4 Temperature Cycle Test	
Table 3-5 PS3111 uSSD Contact ESD Specification	
Table 3-6 HTSL Test	
Table 3-7 Solderability Test	
Table 3-8 Pre-condition Test	
Table 3-9 High Acceleration Stress Test	
Table 3-10 Temperature Cycling Test	
Table 4-1 Supply Voltage of PS3111 uSSD	
Table 4-2 Power Consumption of PS3111 uSSD	11
Table 5-1 PS3111 uSSD Pin Descriptions	14
Table 6-1 ATA Command List	18
Table 6-2 List of Device Identification	20
Table 6-3 List of Device Identification for Each Capacity	23
Table 9-1 List of References	28
Table 10-1 List of Terminology	29

1. INTRODUCTION

1.1. General Description

Phison's PS3111 uSSD delivers all the advantages of flash disk technology with the Serial ATA I/II/III interface in an embedded BGA form factor. Its capacity could provide range from 16GB to 256GB. Moreover, it can reach up to 550MB/s read as well as 490MB/s write high performance, and lower power consumption makes it an ideal storage choice for high performance demanding mobile devices.

1.2. Controller Block Diagram

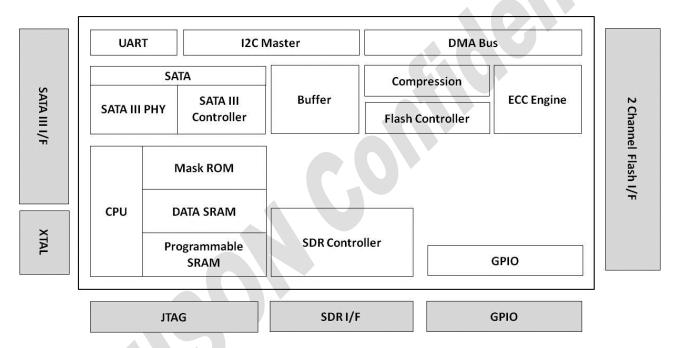


Figure 1-1 PS3111 uSSD Controller Block Diagram

1.3. Flash Management

1.3.1. Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, PS3111 uSSD applies the LDPC (Low Density Parity Check) of ECC algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2. Wear Leveling

NAND flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some areas get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling is applied to extend the lifespan of NAND flash by evenly distributing write and erase cycles across the media.

Phison provides advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND flash is greatly improved.

1.3.3. Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Phison implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability

1.3.4. TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform the erase action, which prevents unused data from occupying blocks all the time.

1.3.5. SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a hard disk drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

1.3.6. Over-Provision

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible and cannot be used by users. With Over Provisioning, the performance and IOPS (Input/Output Operations per Second) are improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.3.7. Firmware Upgrade

Firmware can be considered as a set of instructions on how the device communicates with the host. Firmware will be upgraded when new features are added, compatibility issues are fixed, or read/write performance gets improved.

1.4. Low Power Management

1.4.1. DEVSLP Mode (Optional)

DEVSLP mode depends on the main board design.

With the increasing need of aggressive power/battery life, SATA interfaces include a new feature, Device Sleep (DEVSLP) mode, which helps further reduce the power consumption of the device. DEVSLP enables the device to completely power down the device PHY and other sub-systems, making the device reach a new level of lower power operation.

1.4.2. DIPM/HIPM Mode

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. For Partial mode, the device has to resume to full operation within 10 microseconds, whereas the device will spend 10 milliseconds to become fully operational in the Slumber mode. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

1.5. Power Loss Protection: Flushing Mechanism (Optional)

Power Loss Protection is a mechanism to prevent data loss during unexpected power failure. DRAM is a volatile memory and frequently used as temporary cache or buffer between the controller and the NAND flash to improve the SSD performance. However, one major concern of the DRAM is that it is not able to keep data during power failure. Accordingly, the PS3111 applies the *GuaranteedFlush* technology, which

requests the controller to transfer data to the cache. For PS3111, SDR performs as a cache, and its size is 32MB. Only when the data is fully committed to the NAND flash will the controller send acknowledgement (ACK) to the host. Such implementation can prevent false-positive performance and the risk of power cycling issues.

Additionally, it is critical for a controller to shorten the time the in-flight data stays in the cache. Thus, Phison's PS3111 applies an algorithm to reduce the amount of data resides in the cache to provide a better performance. This *SmartCacheFlush* technology allows incoming data to only have a "pit stop" in the cache and then move to the NAND flash at once. If the flash is jammed due to particular file sizes (such as random 4KB data), the cache will be treated as an "organizer", consolidating incoming data into groups before written into the flash to improve write amplification.

In sum, with Flush Mechanism, PS3111 proves to provide the reliability required by consumer, industrial, and enterprise-level applications.

1.6. Advanced Device Security Features

1.6.1. Secure Erase

Secure Erase is a standard ATA command and will write all "OxFF" to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will erase its storage blocks and return to its factory default settings.

1.6.2. Write Protect

When a SSD contains too many bad blocks and data are continuously written in, then the SSD might not be usable anymore. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

1.7. SSD Lifetime Management

1.7.1. Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

$TBW = [(NAND \ Endurance) \ x \ (SSD \ Capacity) \ x \ (WLE)] \ / \ WAF$

NAND Endurance: NAND endurance refers to the P/E (Program/Erase) cycle of a NAND flash.

<u>SSD Capacity</u>: The SSD capacity is the specific capacity in total of a SSD.

<u>WLE</u>: Wear Leveling Efficiency (WLE) represents the ratio of the average amount of erases on all the blocks to the erases on any block at maximum.

WAF: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller needs to write and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency of data written to flash memory.

1.8. An Adaptive Approach to Performance Tuning

1.8.1. Throughput

Based on the available space of the disk, PS3111 will regulate the read/write speed and manage the performance of throughput. When there still remains a lot of space, the firmware will continuously perform read/write action. There is still no need to implement garbage collection to allocate and release memory, which will accelerate the read/write processing to improve the performance. Contrarily, when the space is going to be used up, PS3111 will slow down the read/write processing, and implement garbage collection to release memory. Hence, read/write performance will become slower.

1.8.2. Predict & Fetch

Normally, when the host tries to read data from the SSD, the SSD will only perform one read action after receiving one command. However, PS3111 applies *Predict & Fetch* to improve the read speed. When the host issues sequential read commands to the SSD, the SSD will automatically expect that the following will also be read commands. Thus, before receiving the next command, flash has already prepared the data. Accordingly, this accelerates the data processing time, and the host does not need to wait so long to receive data.

1.8.3. SmartZIP™

Write data to the NAND Flash costs time. To improve the write speed performance, PS3111 launches with compression technique-- SmartZip

Whether a file could be compressed or not depending on the file type, for file types have redundancy data pattern, through our embedded encode engine, we could reduce the amount of data that is actually written to the Flash. Comparing to the SSD without the compression, write efficiency is raised and the SSD endurance is also improved since Flash could be benefit from less data written for a longer SSD lifetime.

2. PRODUCT SPECIFICATIONS

- Capacity
 - From 32GB up to 256GB (support 48-bit addressing mode)
- Electrical/Physical Interface
 - SATA Interface
 - ♦ Compatible with SATA 1.5Gbps, 3Gbps and 6Gbps interface
 - ◆ AC coupling for transmitter and receiver
 - ♦ Self-calibrated and embedded termination resistor at transmitter
 - ◆ Support power management
 - Support expanded register for SATA protocol 48-bit addressing mode
- Supported NAND Flash
 - Toshiba BiCS 3, Toggle 2.0
- ECC Scheme
 - PS3111 uSSD applies the LDPC (Low Density Parity Check) of ECC algorithm.
- Operation Voltage Supply
 - 3.3V ± 5%
 - 1.8V ± 5%
- Power Saving Implementation
 - Idle mode
 - Sleep mode
 - Partial mode
 - Slumber mode
- UART function
- Implement Voltage Detector
- GPIO
- Support SMART and TRIM commands

Performance

			Sequential		
Capacity	Flash Structure	Flash Type	Read	Write	
			(MB/s)	(MB/s)	
32GB	32GB x 1	TSB BiCS 3	290	55	
64GB	32GB x 2	TSB BiCS 3	550	250	
128GB	32GB x 4	TSB BiCS 3	550	450	
256GB	32GB x 8	TSB BiCS 3	550	480	

NOTES:

- 1. The performance was measured using CrystalDiskMark with SATA 6Gbps host.
- 2. Samples were built using Toshiba TSB BiCS 3 Toggle 2.0 TLC NAND flash.
- 3. Performance may differ according to flash configuration and platform.
- 4. The table above is for reference only. The criteria for MP (mass production) and for accepting goods shall be discussed based on different flash configuration.

3. ENVIRONMENTAL SPECIFICATIONS

3.1. Environmental Conditions

3.1.1. Temperature and Humidity

• Temperature:

Storage: -40°C to 85°COperational: 0°C to 70°C

Humidity: RH 90% under 40°C (operational)

Table 3-1 High Temperature Test Condition

	Temperature	Humidity	Test Time
Operation	70°C	0% RH	72 hours
Storage	85°C	0% RH	72 hours

Result: No any abnormality is detected.

Table 3-2 Low Temperature Test Condition

	Temperature	Humidity	Test Time
Operation	0°C	0% RH	72 hours
Storage	-40°C	0% RH	72 hours

Result: No any abnormality is detected.

Table 3-3 High Humidity Test Condition

	Temperature	Humidity	Test Time
Operation	40°C	90% RH	72 hours
Storage	40°C	93% RH	72 hours

Result: No any abnormality is detected.

Table 3-4 Temperature Cycle Test

	Temperature	Test Time	Cycle		
Operation	0°C	30 min	10 Ovolos		
Operation	70°C	30 min	10 Cycles		
Storogo	-40°C	30 min	10 Cycles		
Storage	85°C	30 min	10 Cycles		

Result: No any abnormality is detected.

3.1.2. Electrostatic Discharge (ESD)

Table 3-5 PS3111 uSSD Contact ESD Specification

Device	Capacity	Temperature	Relative Humidity	+/- 4KV	Result
uSSD	256GB	23.0°C	49% (RH)	Device functions are affected, but EUT will be back to its normal or operational state automatically.	PASS

3.1.3. EMI Compliance

FCC: CISPR22CE: EN55022BSMI 13438

3.2. Package Qualification

3.2.1. High Temperature Storage Life Test (HTSL)

Table 3-6 HTSL Test

Parameter	Test Condition				
	Temperature	Test Duration			
Storage	150°C	168/1000 hours			

Result: No any abnormality is detected.

3.2.2. Solderability Test

Table 3-7 Solderability Test

Parameter	Test Condition
	85°C/85% RH 16 hours, bake 1 hour at 125°C.
Storage	Molten solder temperature: 245± 5°C
	Dwell time: 5 seconds

Note: Spec: > 95% of coating area, pinhole, voids, do not exceed 5% of total area.

Result: Pass.

3.2.3. Pre-condition Test

Table 3-8 Pre-condition Test

Parameter	Test Method	Test Condition			
		1. Temperature Cycle (-65°C/150°C, 5 cycles)			
Storogo	JEDS	2. Baking (125°C, 24 hours)			
Storage	22-A113-F	3. Temp & Humidity Soaking (30°C/60% RH, 192 hours)			
		4. IR Reflow 3 cycles			

Note: The parts passing this test will be used to do HAST and TCT.

Results: 1. No any abnormality is detected.

2. On SAT inspection, no interfacial delamination was detected on die surface.

3.2.4. High Acceleration Stress Test (HAST/unbias)

Table 3-9 High Acceleration Stress Test

Parameter	Test Method		Test Cond	lition
Chamana	JEDS 22-A110-D	Ambient Temperature	Ambient Humidity	Test Duration
Storage		130°C	85% RH	96 hours

Result: No any abnormality is detected.

3.2.5. Temperature Cycling Test (TCT)

Table 3-10 Temperature Cycling Test

Parameter	Test Method		Test Co	ndition
Storage	IEDS 22 A104 D	High Temperature	Low Temperature	Test Duration
	JEDS 22-A104-D	150°C	-65°C	200/500 cycles

Result: No any abnormality is detected.

3.3. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device. The predicted result of Phison's PS3111 uSSD is more than 2,000,000 hours.

3.4. Certification & Compliance

- SATA III (SATA Rev. 3.2)
- Up to ATA/ATAPI-8 (Including S.M.A.R.T)

4. ELECTRICAL SPECIFICATIONS

4.1. Supply Voltage

Table 4-1 Supply Voltage of PS3111 uSSD

Parameter	Rating
VCC	3.3V
VCCQ	1.8V
VDDC	1.2V

4.2. Power Consumption

Table 4-2 Power Consumption of PS3111 uSSD

Capacity	Flash Structure	Flash Type	Read	Write	Partial	Slumber	Idle
32GB	32GB x 1	TSB BiCS 3	860	825	18	12	300
64GB	32GB x 2	TSB BiCS 3	1,130	1,030	17	11	310
128GB	32GB x 4	TSB BiCS 3	1,135	1,330	17	12	310
256GB	32GB x 8	TSB BiCS 3	1,215	1,495	18	12	305

Unit: mW

NOTES:

- 1. The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. The total measured power voltage includes 1.8V, and 3.3V.
- 3. Samples were built using Toshiba BiCS 3 Toggle 2.0 TLC NAND flash and measured under ambient temperature.
- 4. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by CyrstalDiskMark.
- 5. Power Consumption may differ according to flash configuration and platform.

5. INTERFACE

5.1. Pin Assignment and Descriptions

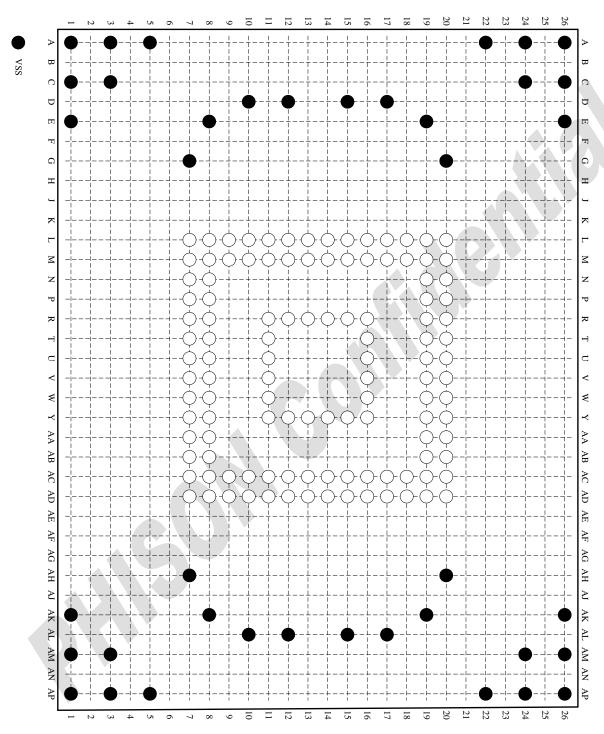


Figure 5-1 PS3111 uSSD Pin Assignment (Top View)

	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
L	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	L
	vss	vss	XTAL_OUT	NC	vss	vcc	NC	NC	NC	NC	NC	NC	vss	vss	м
М	vss	NC	PWR_RESETN	XTAL_IN	vcc	XTXD	DAS	NC	NC	NC	NC	NC	vss	vss	IVI
N	\bigcirc	\bigcirc											\bigcirc	\bigcirc	N
Р	vss	vss											vss	NC	P
R	SATA_RX_P	NC			<u> </u>		O	O	O				vss	vss	R
т	SATA_RX_N VSS	NC VSS			NC NC	VSS	VCC	VCC	VCC	vcc Vcc			VCC	VCC O NC	Т
U	\bigcirc	\bigcirc			\bigcirc					\bigcirc			0		U
v	SATA_TX_N	SATA_VCC			vss					vcc			VSS	vss	V
•	SATA_TX_P	SATA_VCC	2		vcc					vccq			vss	NC	•
w	\bigcirc	\bigcirc			\bigcirc								\bigcirc	\bigcirc	W
Y	VSS	NC			VDDC			\bigcirc		vccq			NC	NC	Y
	NC	NC			VDDC	VDDC	VDDC	vss	vss	VCCQ			vcc	vcc	'
AA	\bigcirc	\bigcirc											\bigcirc	\bigcirc	AA
	NC	NC											vcc	XRXD	
AB	NC NC	NC											NC NC	NC	AB
AC	\bigcirc		\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	AC
	VSS	vcc	DEVSLP	NC	NC	NC	GPIO6	GPIO2	NC	NC	NC	NC	NC	VSS	
AD	\bigcirc	\bigcirc	\bigcirc					\bigcirc	AD						
	VSS	VSS	GPIO3	NC	GPIO7	NC	GPIO13	NC	NC	NC	NC	NC	VSS	VSS	
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
					Figu	ıre 5-2	2 uSSD	Pin As	signm	ent					

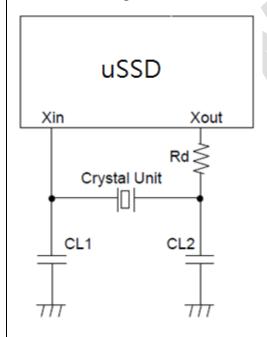
Table 5-1 PS3111 uSSD Pin Descriptions

Pin Name	BGA 156	Pin Type	PU/PD	Description						
	UART/GPIO									
XTXD XRXD	M12 AA20	0 	PU 75K	UART transmit/receive port						
GPIO2	AC14	•								
GPIO3	AD9									
GPIO6	AC13	10	PU 75K	General purpose input/output pins						
GPIO7	AD11									
GPIO13	AD13									
		SA	TA Interfa	ce signals						
SATA_RX_N	R7	1		Differential Signal Pair A.						
SATA_RX_P	P7	I		SATA Device Receive Signal Differential Pair.						
SATA_TX_N	U7	0		Differential Signal Pair B.						
SATA_TX_P	V7	0		SATA Device Transmit Signal Differential Pair.						
DAS	M13	0		Device Activity Signal						
SATA_VCC	V8 V8			+3.3V						
			Control S	ignals						
XTAL_IN	M10	- 1		Cristal input (output pin (2014))						
XTAL_OUT	L9	0		Crystal input/output pin. (30MHz)						
PWR_RESETN	M9	1		Hardware Reset, low active. note 1						
		Po	wer suppl	y Signals						
	L12									
	M11									
	R13									
	R14									
	R15									
	R16									
	R19			.2.24						
VCC	R20			+3.3V						
	T16 U16									
	V11									
	Y19									
	Y20									
	AA19									
	AC8									
	W11									
	Y11									
VDDC	Y12			+1.2V						
	Y13									
	V16									
VCCQ	W16			+1.8V						
	Y16									
GND Signals										

VSS	R12 U11 L7 L8 M7 N7 T7 W7 L11 L19 L20 M19 M20 N19 P19 AC20 AD20 AD19 AD8 AD7 T8 Y14 Y15 U19 P20 U20 V19 AC7 N8 A1 C1 E1 AK1		Ground
VSS	AD20 AD19 AD8 AD7 T8 Y14 Y15 U19 P20 U20 V19 AC7 N8 A1 C1		Ground

	_			_
	A24			
	C24 AM24			
	AP24			
	A26			
	C26			
	E26			
	AK26			
	AM26			
	AP26			
		T	Other Si	gnals
DEVSLP	AC9	I	PU 69.8K & PD 75K	DEVICE SLEEP, High active. (Normal is Low)
	Р8			
	R8			
	L15			
	L16 L17			
	L17			
	AA7			
	AA8			
	AB7			
	AB8			
	AB19			
	AB20			
	AC10			
	AC11			
	AC12			
	AC15 AC16			
	AC16 AC17			
	AC17			
	AC19			
	AD10			
	AD12			
NC	AD14			DNU
INC	AD15			DNO
	AD16			
	AD17	4 4		
	AD18			
	L10 M16			
	M17			
	M8			
	T19			
	T20			
	W19			
	W8			
	Y7			
	Y8			
	L13			
	L14			
	M14 M15			
	M18			
	N20			
	V20			
	W20			
	R11			

_			
- 1	T11		


NOTE:

There is an internal Power On Reset at ball #M9 and power on sequence of internal POR is 22ms~28ms.
 It's an optional function to choose whether POR (M9) is connected to an external capacitance or not.

5.2. Crystal Spec

NO.	ltem	SPEC
1	Nominal frequency (MHz)	30
2	Oscillation mode	fundamental
3	Max frequency tolerance @ 25° (ppm)	±50
4	Operating temperature range and frequency	-40~+85°C±50
	stability over operating temperature (ppm)	
5	Storage temperature range	-40~+85℃
6	Max. equivalent resistance (Ohm)	100
7	Max. drive level (mW)	0.1
8	Max. isolation resistance (Mohm)@DC100V	500
9	Aging (max. ppm per year)	±5

External CL1, CL2, and Rd: Please refer to the characteristic of crystal vendor in order to matching.

6. SUPPORTED COMMANDS

6.1. ATA Command List

The following ATA command list table is followed by ATA8-ACS4 SPEC.

Table 6-1 ATA Command List

lable 6-1 AIA Command List						
Op Code	Description	Op Code		le	Description	
00h	NOP		C9h		Read DMA without Retry	
06h	Data Set Management		CAh		Write DMA	
10h-1Fh	Recalibrate		CBh		Write DMA without Retry	
20h	Read Sectors		CEh		Write Multiple FUA EXT	
21h	Read Sectors without Retry		E0h		Standby Immediate	
24h	Read Sectors EXT		E1h		Idle Immediate	
25h	Read DMA EXT		E2h		Standby	
27h	Read Native Max Address EXT		E3h		Idle	
29h	Read Multiple EXT		E4h		Read Buffer	
2Fh	Read Log EXT		E5h		Check Power Mode	
30h	Write Sectors		E6h		Sleep	
31h	Write Sectors without Retry		E7h		Flush Cache	
34h	Write Sectors EXT		E8h		Write Buffer	
35h	Write DMA EXT		E9h		READ BUFFER DMA	
37h	Set Native Max Address EXT		EAh		Flush Cache EXT	
38h	CFA Write Sectors Without Erase		EBh		Write Buffer DMA	
39h	Write Multiple EXT		ECh		Identify Device	
3Dh	Write DMA FUA EXT		EFh		Set Features	
3Fh	Write Long EXT	EFh	02	2h	Enable volatile write cache	
40h	Read Verify Sectors	EFh	03	3h	Set transfer mode	
41h	Read Verify Sectors without Retry	EFh	0;	5h	Enable the APM feature set	
42h	Read Verify Sectors EXT	EFh	10)h	Enable use of SATA features et	
4.4h	Zaro CVT	rrh.	10h	02h	Enable DMA Setup FIS Auto-Activate	
44h	Zero EXT	EFh	10h	02h	optimization	
4Fb	Write Uncorrectable EXT	rrh.	10h	03h	Enable Device-initiated interface	
45h	Write Uncorrectable EXT	EFh	10h	U3N	power state (DIPM) transitions	
47h	Read Log DMA EVT	EFh	10h	06h	Enable Software Settings Preservation	
4/11	Read Log DMA EXT	EFII	1011	UOII	(SSP)	
57h	Write Log DMA EXT	EFh	h 10h 07'		Enable Device Automatic Partial to	
3/11	MALICE FOR DIAIN EVI	EFII	10h	07h	Slumber transitions	
60h	Read FPDMA Queued	EFh	10h	09h	Enable Device Sleep	
61h	Write FPDMA Queued	EFh	5!	5h	Disable read look-ahead	
70h-7Fh	Seek	EFh	66	5h	Disable reverting to power-on defaults	

Ор	Code	Description	0	р Сос	le	Description
9	0h	Execute Device Diagnostic	EFh	82	2h	Disable volatile write cache
9	1h	Initialize Device Parameters	EFh	85h		Disable the APM feature set
9	2h	Download Microcode	EFh	90)h	Disable use of SATA feature set
9	3h	Download Microcode DMA	EFh	90h	02h	Disable DMA Setup FIS Auto-Activate optimization
В	0h	SMART	EFh	90h	03h	Disable Device-initiated interface power state (DIPM) transitions
B0h	D0h	SMART READ DATA	EFh	90h	06h	Disable Software Settings Preservation (SSP)
B0h	D1h	SMART READ ATTRIBUTE THRESHOLDS	EFh	90h	07h	Disable Device Automatic Partial to Slumber transitions
B0h	D2h	SMART ENABLE/DISABILE ATTRIBUTE AUTOSAVE	EFh	90h	09h	Disable Device Sleep
B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	AAh		Enable read look-ahead
B0h	D4h	SMART EXECUTE OFF-LINE IMMEDIATE	EFh	n CCh		Enable reverting to power-on defaults
B0h	D5h	SMART READ LOG	F1h			Security Set Password
B0h	D6h	SMART WRITE LOG		F2h		Security Unlock
B0h	D8h	SMART ENABLE OPERATIONS		F3h		Security Erase Prepare
B0h	D9h	SMART DISABLE OPERATIONS		F4h		Security Erase Unit
B0h	DAh	SMART RETURN STATUS		F5h		Security Freeze Lock
B0h	DBh	SMART ENABLE/DISABILE AUTOMATIC OFF-LINE		F6h		Security Disable Password
В	1h	Device Configuration	F8h			Read Native Max Address
В	4h	Sanitize	F9h			Set Max Address
С	4h	Read Multiple	F9h	01	Lh	SET MAX SET PASSWORD
С	5h	Write Multiple	F9h	02	2h	SET MAXLOCK
С	6h	Set Multiple Mode	F9h	03	3h	SET MAX UNLOCK
С	8h	Read DMA	F9h	04h		SET MAX FREEZE LOCIK

6.2. Identify Device Data

The following table details the sector data returned by the IDENTIFY DEVICE command of ATA8-ACS4 SPEC.

Table 6-2 List of Device Identification

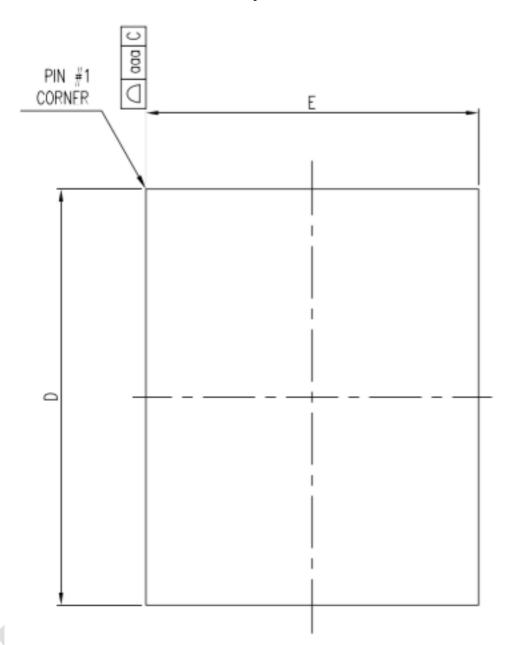
lable 6-2 List of Device Identification					
	F: Fixed				
	V: Variable				
Word	X:	Default Value	Description		
	retired/obsolete				
	/reserved				
0	F	0040h	General configuration bit-significant information		
1	X	*1	Obsolete		
2	F	C837h	Specific configuration		
3	X	0010h	Obsolete		
4-5	X	00000000h	Retired		
6	X	003Fh	Obsolete		
7-8	Х	00000000h	Reserved for assignment by the Compact Flash		
			Association		
9	Х	0000h	Retired		
10-19	V	Varies	Serial number (20 ASCII characters)		
20-21	Х	00000000h	Retired		
22	Х	0000h	Obsolete		
23-26	V	Varies	Firmware revision (8 ASCII characters)		
27-46	V	Varies	Model number (xxxxxxxxx)		
47	F	8010h	7:0- Maximum number of sectors transferred per		
			interrupt on MULTIPLE commands		
48	F	4000h	Trusted Computing feature set options(not support)		
49	F	2F00h	Capabilities		
50	F	4000h	Capabilities		
51-52	X	000000000h	Obsolete		
53	F	0007h	Words 88 and 70:64 valid		
54	х	*1	Obsolete		
55	Х	0010h	Obsolete		
56	Х	003Fh	Obsolete		
57-58	Х	*2	Obsolete		
59	F	5D10h	Sanitize and Number of sectors transferred per		
			interrupt on MULTIPLE commands		
60-61	V	*3	Maximum number of sector (28bit LBA mode)		
62	Х	0000h	Obsolete		
•					

Word	F: Fixed V: Variable X: retired/obsolete /reserved	Default Value	Description	
63	F	0407h	Multi-word DMA modes supported/selected	
64	F	0003h	PIO modes supported	
65	F	0078h	Minimum Multiword DMA transfer cycle time per word	
66	F	0078h	Manufacturer's recommended Multiword DMA transfer cycle time	
67	F	0078h	Minimum PIO transfer cycle time without flow control	
68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control	
69	F	1D00h	Additional Supported (support download microcode DMA)	
70	X	0000h	Reserved	
71-74	х	000000000000	Reserved for the IDENTIFY PACKET DEVICE command	
		0000h		
75	F	001Fh	Queue depth	
76	F	E70Eh	Serial SATA capabilities	
77	F	0006h	Serial ATA Additional Capabilities	
78	F	0044h	Serial ATA features supported	
79	F	0040h	Serial ATA features enabled	
80	F	0FF8h	Major Version Number	
81	F	0000h	Minor Version Number	
82	F	746Bh	Command set supported	
83	F	7D09h	Command set supported	
84	F	4163h	Command set/feature supported extension	
85	F	746Bh	Command set/feature enabled	
86	F	BC01h	Command set/feature enabled	
87	F	6163h	Command set/feature default	
88	F	007Fh	Ultra DMA Modes	
89	F	0003h	Time required for security erase unit completion	
90	F	001Eh	Time required for Enhanced security erase completion	
91	F	0000h	Current advanced power management value	
92	F	FFFEh	Master Password Revision Code	
93	F	0000h	Hardware reset result. For SATA devices, word 93 shall	
			be set to the value 0000h.	

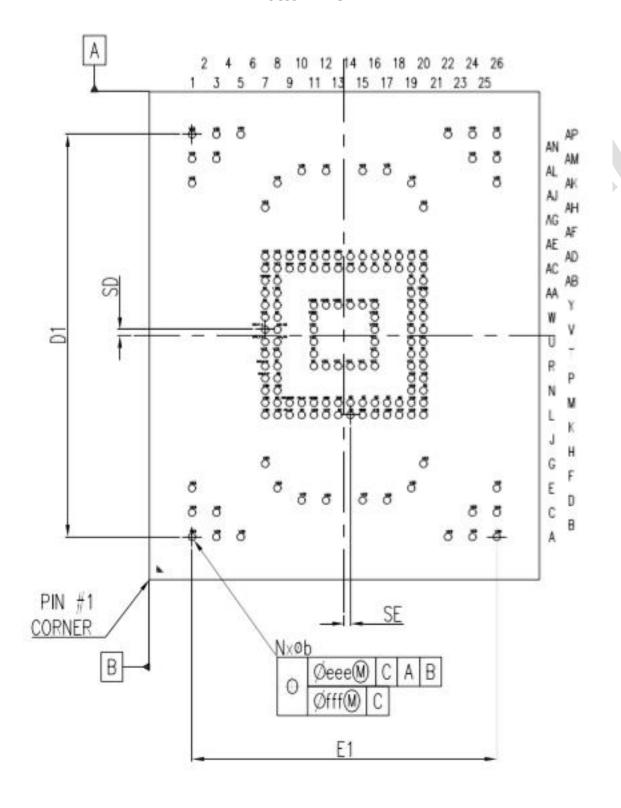
Word	F: Fixed V: Variable X: retired/obsolete /reserved	Default Value	Description	
94	X	0000h	Obsolete	
95	F	0000h	Stream Minimum Request Size	
96	F	0000h	Streaming Transfer Time – DMA	
97	F	0000h	Streaming Access Latency – DMA and PIO	
98-99	F	0000h	Streaming Performance Granularity	
100-103	V	*4	Maximum user LBA for 48 bit Address feature set	
104	F	0000h	Streaming Transfer Time – PIO	
105	F	0008h	Maximum number of 512-byte blocks per DATA SET MANAGEMENT command	
106	F	4000h	Physical sector size/Logical sector size	
107	F	0000h	Inter-seek delay for ISO-7779 acoustic testing in microseconds	
108-111	V	Varies	World Wide Name	
112-115	х	00000000000 0000h	Reserved	
116	Х	0000h	Reserved	
117-118	F	0000000h	Words per logical Sector	
119	F	401Ch	Supported settings	
120	F	401Ch	Command set/Feature Enabled/Supported	
121-126	X	0h	Reserved	
127	Х	0000h	Obsolete	
128	F	0021h	Security status	
129-140	V	Varies	Vendor specific	
141	V	Varies	Vendor specific	
142-159	V	Varies	Vendor specific	
160	X	000h	Reserved for CFA	
161-167	X	0h	Reserved for CFA	
168	V	Varies	Device Nominal Form Factor	
169	F	0001h	DATA SET MANAGEMENT command is supported	
170-173	F	000000000000 000 0h	Additional Product Identifier	
174-175	Х	00000000h	Reserved	
176-205	F	0h	Current media serial number	

Word	F: Fixed V: Variable X: retired/obsolete /reserved	Default Value	Description
206	F	000h	SCT Command Transport
207-208	X	00000000h	Reserved
209	F	4000h	Alignment of logical blocks within a physical block
210-211	F	00000000h	Write-Read-Verify Sector Count Mode 3 (not support)
212-213	F	00000000h	Write-Read-Verify Sector Count Mode 2 (not support)
214-216	X	0h	Obsolete
217	F	0001h	Non-rotating media device
218	Х	000h	Reserved
219	Х	0000h	NV Cache relate (not support)
220	V	0000h	Write read verify feature set current mode
221	Х	0000h	Reserved
222	F	10FFh	Transport major version number
223	F	0000h	Transport minor version number
224-229	Х	0h	Reserved
230-233	F	000000000000 0000h	Extend number of user addressable sectors
234	F	0001h	Minimum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h
235	F	FFFEh	Maximum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h
236-254	Х	0h	Reserved
255	F	XXA5h	Integrity word (Checksum and Signature)
		XX is variable	

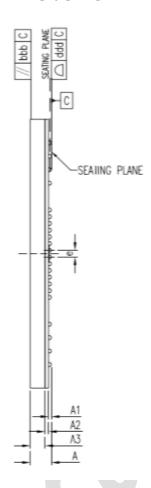
Table 6-3 List of Device Identification for Each Capacity


table of a list of action faction for Lacin capacity						
Capacity	*1	*2	*3	*4		
(GB)	(Word 1/Word 54)	(Word 57 – 58)	(Word 60 – 61)	(Word 100 – 103)		
16	3FFFh	FBFC10h	1DD40B0h	1DD40B0h		
32	3FFFh	FBFC10h	3BA2EB0h	3BA2EB0h		
64	3FFFh	FBFC10h	7740AB0h	7740AB0h		
128	3FFFh	FBFC10h	EE7C2B0h	EE7C2B0h		
256	3FFFh	FBFC10h	FFFFFFFh	1DCF32B0h		

7. PHYSICAL DIMENSION


Dimension: 16mm (L) x 20mm (W)

Top View



Bottom View

Side View

		DIMENSION IN MA		
	SYMBOL	MIN.	NOM.	MAX.
TOTAL THICKNESS	A	1.45	1.57	1.70
STAND OFF	Λ1	0.16	0.21	0.26
SUBSTRATE THICKNESS	Λ2		0.26	
MOLD THICKNESS	A3		1.10	
BODY SIZE	D		20	
BUUT SIZE	E		16	
BALL DIAMETER			0.30	
BALL OPENING		0.275		
BALL WIDTH	b	0.25 0.30 0.35		
BALL PITCH	е	0.50		
BALL COUNT	n	156		
EDGE BALL CENTER TO CENTER	D1	16.50 BSC.		
EDGE BALL CENTER TO CENTER	E1	12.50 BSC.		
BODY CENTER TO CONTACT BALL	SD	0.25 BSC.		
BODT CENTER TO CONTACT DALL	SE	0.25 BSC.		
JEDEC(REF)		MO	-276(RE	F.)
PACKAGE EDGE TOLERANCE	000	0.15		
MOLD FLATNESS	bbb	0.20		
COPLANARITY	ddd	0.08		
BALL OFFSET(PACKAGE)	eee	0.15		
BALL OFFSET(BALL)	fff		0.05	

8. PRODUCT WARRANTY POLICY

Warranty period of the Product is twelve (12) months from the date of manufacturing. In the event the Product does not conform to the specification within the aforementioned twelve (12) -month period and such nonconformity is solely attributable to Phison's cause, Phison agrees at its discretion replace or repair the nonconforming Product. Notwithstanding the foregoing, the aforementioned warranty shall exclude the nonconformity arising from, in relation to or associated with:

- (1) Alternation, modification or improper use of the Product;
- (2) Failure to comply with Phison's instructions;
- (3) Phison's compliance with downstream customer or user indicated instructions, technologies, designs, specifications, materials, components, parts;
- (4) Combination of the Product with other materials, components, parts, goods, hardware, firmware or software; or
- (5) other error or failure not solely attributable to Phison's cause (including without limitation, normal wear or tear, manufacturing or assembly wastage, improper operation, virus, unauthorized maintenance or repair).

EXCEPT FOR THE ABOVE EXPRESS LIMITED WARRANTY, THE PRODUCT IS PROVIDED "AS IS," AND PHISON MAKES NO OTHER WARRANTIES (WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE) REGARDING THE PRODUCT OR ANY PORTION OF IT. PHISON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING OR USAGE OF TRADE.

9. REFERENCES

The following table is to list out the standards that have been adopted for designing the product.

Table 9-1 List of References

Title	Acronym/Source		
RoHS	Restriction of Hazardous Substances Directive; for further information,		
Nons	please contact us at sales@phison.com or support@phison.com .		
Micro SSD [™]	http://www.jedec.org		
Serial ATA Revision 3.1	http://www.sata-io.org		
ATA-8 spec	http://www.t13.org		
FCC: CISPR22	Federal Communications Commission; for further information, please		
FCC: CISPR22	contact us at sales@phison.com or support@phison.com.		
CE: EN55022	Consumer electronics certification; for further information, please		
CE: EN55022	contact us at sales@phison.com or support@phison.com .		
	The Bureau of Standards, Metrology and Inspection; for further		
BSMI: 13438	information, please contact us at sales@phison.com or		
	support@phison.com.		

10. TERMINOLOGY

The following table is to list out the acronyms that have been applied throughout the document.

Table 10-1 List of Terminology

Term	Definitions
ATTO	Commercial performance benchmark application
DEVSLP	Device sleep mode
DIPM	Device initiated power management
HIPM	Host initiated power management
LBA	Logical block addressing
МВ	Mega-byte
MTBF	Mean time between failures
NCQ	Native command queue
SATA	Serial advanced technology attachment
SDR	Synchronous dynamic access memory
S.M.A.R.T.	Self-monitoring, analysis and reporting technology
SSD	Solid state disk

11. ORDERING INFORMATION

Portfolio

Part Number	Dimension	BGA	Flash mode	Density
PSS5A311-32G	16x20x1.7mm	156 Ball	2-CH	32GB
PSS5A322-64G	16x20x1.7mm	156 Ball	2-CH	64GB
PSS5A323-X28	16x20x1.7mm	156 Ball	2-CH	128GB
PSS5A324-256	16x20x1.7mm	156 Ball	2-CH	256GB